足球比分直播

硅基毫米波功率放大器分析与设计.pdf

返回
硅基毫米波功率放大器分析与设计.pdf_第1页
第1页 / 共65页
硅基毫米波功率放大器分析与设计.pdf_第2页
第2页 / 共65页
硅基毫米波功率放大器分析与设计.pdf_第3页
第3页 / 共65页
硅基毫米波功率放大器分析与设计.pdf_第4页
第4页 / 共65页
硅基毫米波功率放大器分析与设计.pdf_第5页
第5页 / 共65页
点击查看更多>>
资源描述:
杭州电子科技大学 学位论文原创性声明和使用授权说明 原创性声明 本人郑重声明 所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。 申请学位论文与资料若有不实之处,本人承担一切 相关责任。 论文作者签名 日期 年 月 日 学位论文使用授权说明 本人完全了解杭州电子科技大学关于保留和使用学位论文的规定,即研究生在校攻读学位期间论文工作的知识产权单位属杭州电子科技大学。本人保证毕业离校后,发表论文或使用论文工作成果时署名单位仍然为杭州电子科技大学。学校有权保留送交论文的复印件,允许查阅和借阅论文;学校可以公布论文的全部或部分内容,可以允许采用影印、缩印或其它复制手段保存论文。(保密论文在解密后遵守此规定) 论文作者 签名 日期 年 月 日 指导教师签名 日期 年 月 日 万方数据杭州电子科技大学硕士学位论文 I 摘 要 在近几十年,无线通信技术随着电子技术的发展而得以迅速发展,但随之出现了在低频频段开始出现了频谱资源日益紧张。同时随着多媒体技术的发展,人们对无线通信系统的要求越来越高。不过,幸运的是毫米波频段的频谱资源丰富而且能够实现高速率传输,毫米波技术给无线通信 研究提供了广阔的频谱资源空间,同时给无线通信 带来了新的活力和更多的选择。 其中 60GHz 技术以其频带宽、抗干扰力强、传输安全性高,超高速的数据传输能力等众多优点,成为下一代无线通信系统的发展方向,是学术界和工业界的研究热点。而当通信频率高于 100GHz 时, 可提供高达 10Gb/s 的无线传输速率和更为紧凑的系统结构,易于多功能集成实现应用。 当前,欧美、日本以及中国台湾的各大高校、研究机构以及各大消费电子产品公司纷纷开展 60GHz 以及高于 100GHz 频率技术的研究,取得了显著的成果。近年,国内外关于 60GHz 以及高于 100GHz频率的硅基功率放大器的文献数量有了显著增长,电路性能也大幅提 高。 本文总结了 60GHz 和高于 100GHz 频率的硅基功率放大器的研究进展,探讨硅基毫米波功率放大器的挑战和设计 方法 ,并对 60GHz CMOS 以及 150GHz SiGe BiCMOS 功率放大电路进行研究与设计。其内容简述如下 ( 1)本文调研了 60GHz 以及高于 100GHz 频率的硅基功率放大器的相关文献,归纳出电路的典型结构及技术指标。截止至 2013 年 , IEEE 报道的 60GHz CMOS 功率放大器的饱和输出功率从 8dBm 提高到超过 20dBm, 增益从 5.2dB 提高到近 30dB, PAE 从 7提 高到了 25以上。而高于 100GHz 频率 硅基 的功率放大器的典型指标饱和输出功率 基本都在15dBm 以内,增益大于 10-25dB, PAE 一般小于 10。截止到 2013 年,高于 100GHz 功率放大器的 最优的指标 能够达到 最高工作频率为 260GHz, 最高饱和输出功率为 13.2dBm, 最高增益为 24.3dB, 最高 PAE 为 14.6。 ( 2)本文较为详细地 讨论 了功率放大器的基础理论,同时深入的调研针对硅基工艺下毫米波功率放大器设计的挑战以及深入的调研并详细探讨毫米波电路设计的方法。随着硅基工艺的不断进步,目前硅基工 艺的有源器件截止频率 fT 已经能够达到 300GHz,这使得硅基毫米波集成功率放大器 的设计 成为可能。但硅基工艺毫米波功率放大器的设计仍然存在诸多挑战。有源器件击穿电压低限制了毫米波功率放大器的输出功率硅基工艺高损耗加大了传输线的损耗 , 此外器件模型精确度不高也成为毫米波功率放大器的设计的一个巨大的挑战。针对这些不利因素,本文列举了目前多种能够一定程度上解决这些挑战的方法,例如功率合成、逼近截止频率等设计方法。 ( 3) 本文 设计了一款基于 TSMC 90nm CMOS 工艺的 60GHz 功率放大器 。在此 功率放万方数据杭州电子科技大学硕士学位论文 II 大器 的设计中,针对毫米波频段晶体管增益不够的情况,采用共源共栅结构和在第一级共源器件栅漏之间并联电感谐振掉 MOS 管寄生电容 Cgd 的方法来提高增益,并完成了流片加工和测试;针对测试 性能不理想的情况进行了分析,找出了与仿真结果之间差异的原因所在,从而得出了一定的设计方法 。 ( 4)此外本文采用上文归纳总结的设计方法,还设计了 一款基于 IHP 0.13μm SiGe BiCOMS 工艺的 150GHz 功率放大器 。 在 150GHz 的功率放大器的设计中,采取了差分结构和变压器功率合成的方法来提高放大器的输出功率。 同时, 电路采用共发 射极结构,通过巴伦实现单转双输入以及双转单输出,实现功率分配、功率合成、阻抗匹配以及中间抽头实现偏置输入。在电路核心部分实现轴对称,这样较好的抑制共模信号。最后 完成了电路 、 版图的设计 以及 优化 , 芯片面积为 0.19mm2。 本文较为全面地调研了 60GHz 和高于 100GHz 频率的硅基功率放大器的研究进展,详细地总结毫米波的特点、应用以及毫米波硅基电路的研究现状 ,探讨在毫米波频段设计功率放大器所面临的挑战和解决方法;在此基础上,设计了一款 60GHz CMOS 功率放大电路以及150GHz SiGe BiCOMS 功率放大器,这为硅基工艺实现毫米波电路,特别是毫米波功率放大器奠定一定的基础。 关键词 毫米波单片集成电路;功率放大器; 60GHz; 150GHz;硅基 万方数据杭州电子科技大学硕士学位论文 III ABSTRACT In recent years, the wireless communication technology developed rapidly. With the development of electronic technology, thereby some problems appearing in the low frequency band, such that the spectrum resources appear increasingly crowded. At the same time, with the development of multimedia technology, the requirements of wireless communication system are more and more higher than bebore. Fortunately the millimeter wave( mm-wave) frequency has abundant spectrum resource and it can achieve high data rate transmission. Hence mm-wave technology will bring new vitality and more choices for wireless communication. The 60GHz technology has advantages of the wide bandwidth, strong anti-interference ability, high safety of transmission, ultra high-speed data transmission capacity and etc . So this technology becomes the direction of next generation wireless communication systems and a hot research topic in the academic and industrial fields. The frequency above 100GHz can provide wireless transmission data rate that can be up to 10Gb/s and the this systems have the advantages of compact structure which is easy to realize multifunctional integrated application. At those frequencies above 100GHz, the spectrum resources provide a wide band for the research of wireless communications, and it is expected to become another major direction of future wireless communication system. At present, some universities and research institutions in Europe, the United States, Japan, Taiwan and some big consumer electronics product company have been carrying out research on 60GHz technology and the frequency above 100GHz technology. By now they have achieved remarkable results. Recent years, the number of the literatures about 60GHz and above 100GHz silicon-based power amplifier has increased significantly, the perances of the circuits are also significantly improved. This thesis summarizes the research progress of 60GHz and the frequency above 100 GHz silicon-based power amplifiers, discuss the challenges and design s of silicon-based mm-wave power amplifier. And the 60GHz CMOS and 150GHz SiGe BiCOMS power amplifies were researched and designed. Its contents are described as follows 1 The 60GHz and the frequency above 100 GHz silicon based power amplifiers were investigated and typical structure and technical inds of circuits were summarized up in this thesis. To the end of 2013, the 60GHz CMOS power amplifiers were reported in IEEE have the perances the saturated output power increases from 8dBm to more than 20dBm, the gain increases from 5.2dB to near 30dB, the PAE increased from 7 to more than 25. Typical 万方数据杭州电子科技大学硕士学位论文 IV indicators of THz sillicon based power amplifiers the saturation output power is inside 15dBm, gain is 10-25dB, the PAE is generally less than 10. The optimal index the highest working frequency is 260GHz; the maximum saturated output power is 13.2dBm; the maximum gain is 24.3dB; the highest PAE 14.6. 2 The basic theory of power amplifier was discussed, the challenges of silicon-based mm-wave power amplifiers and the design s of mm-wave amplifier were investigated in this thesis. With the development of silicon based technology, the cutoff frequency fT of active devices has been able to reach 300GHz, which makes silicon based mm-wave integrated circuit become possible. But adoption of silicon based technology to design mm-wave power amplifier still exists many challenge. First, the active device breakdown voltage is low, which limits the output power. Secondly, in mm-wave band, the loss of the silicon substrate is high, increasing loss of transmission line, so this greatly limits the perance of efficiency and gain. In addition, the accuracy of the device model is not high, thereby it also become a great challenge to the design of millimeter wave power amplifier. In view of these adverse factors, this paper lists some such as power synthesis, approaching the cutoff frequency design , which can solve these challenges to a certain extent, 3This paper designed a 60 GHz power amplifier based on the TSMC 90 nm CMOS. The transistor gain in millimeter wave band is not enough, so cascode structure was used and in the first stage a paralleled inductance was put between gate-drain of the CS device to resonante off the parasitic capacitance Cgd in the MOS FET to improve the gain. Tape out and test were completed next. At final, the situation of the test perance that is not ideal was analyzed, and the differences between the results of simulation were found out, thus a certain design were obtained. 4 In addition, this paper summarizes the design of the above s. A 150 GHz power amplifier based on the IHP 0.13μm SiGe BiCOMS was designed.In the design of the 150 GHZ power amplifier, the differential transer structure was adopted and power synthesis was choosed to increase the output power of the amplifier. The Circuit adopts common emitter structure. The baluns were used as the transation of single-end and double-end, power synthesis, impedance matching, and DC from the intermediate tap. In the core part of the circuit is symmetric, so it has the better suppress of common mode. Finally the circuit and layout design were completed , optimized and the chip area was 0.19 mm2. This thesis summarized the characteristics, the applications of mm-wave and investigated the 60GHz CMOS and the frequency above 100GHz silicon based power amplifier. As well, this thesis discussed the mm-wave silicon based power amplifier design challenges and solutions. Based above, a 60GHz CMOS power amplifier and a 150GHz SiGe BiCOMS power amplifier were designed. 万方数据杭州电子科技大学硕士学位论文 V This lays a foundation of realization of the silicon based mm-wave circuits, especially mm-wave power amplifier. Key words MMIC; Power Amplifier; 60GHz; THz; Silicon-based 万方数据杭州电子科技大学硕士学位论文 VI 目 录 摘 要 ........................................................................................................................................... I ABSTRACT ....................................................................................................................................... III 目 录 ................................................................................................................................................ VI 第一章 绪论 ........................................................................................................................................ 1 1.1 硅基工艺的毫米波集成电路背景 .....................................................................................................1 1.1.1 毫米波的特点及其应用 .........................................................................................................1 1.1.2 硅基工艺的特点 .....................................................................................................................1 1.3 60GHz 及高于 100GHz 频率技术的研究意义 ...................................................................................2 1.3.1 60GHz 研究意义 .......................................................................................................................2 1.3.2 高于 100GHz 频率技术研究意义 ...........................................................................................3 1.4 硅基毫米波功率放大器国内外的研究现状 .....................................................................................3 1.4.1 基于 CMOS 工艺的 60GHz 功率放大器的研究状况 ..............................................................3 1.4.2 基于硅基工艺工作在 100GHz 的功率放大器的研究 ...........................................................5 1.5 本课题的研究内容及论文结构 .........................................................................................................7 第二章 功率放大器基础 .................................................................................................................... 9 2.1 功率放大器的分类 .............................................................................................................................9 2.2 功率放大器的性能指标 .....................................................................................................................9 2.2.1 输出功率 .............................................................................................................................. 10 2.2.2 增益 ...................................................................................................................................... 10 2.2.3 效率 ...................................................................................................................................... 11 2.2.4 线性度 ................................................................................................................................... 12 2.25 稳定性 ................................................................................................................................... 15 2.3 毫米波硅基功率放大器挑战与机遇 ............................................................................................. 16 2.3.1 硅基工艺晶体管的截止频率 ............................................................................................... 16 2.3.2 硅基工艺晶体管击穿电压低 ............................................................................................... 16 2.3.3 硅基电路中的损耗 ............................................................................................................... 16 2.3.4 增益与输出功率的折衷 ...................................................................................................... 17 2.4 毫米波集成电路的设计方法 .......................................................................................................... 17 2.5 毫米波 CMOS 功率放大器常用设计方法 ...................................................................................... 19 万方数据杭州电子科技大学硕士学位论文 VII 2.5.1 单路式功率放大器 .............................................................................................................. 19 2.5.2 变压器差分功率合成 ........................................................................................................... 23 2.5.3 威尔金森功率合成 ............................................................................................................... 23 2.6 本章小结 .......................................................................................................................................... 25 第三章 60GHz CMOS 功率放大器设计 ......................................................................................... 26 3.1 性能指标 .......................................................................................................................................... 26 3.2 工艺介绍 .......................................................................................................................................... 26 3.2.1 工艺层 ................................................................................................................................... 26 3.2.2 MOS 管 .................................................................................................................................. 27 3.3.3 电容 ...................................................................................................................................... 28 3.3 技术分析 .......................................................................................................................................... 29 3.3.1 电路结构 ............................................................................................................................... 29 3.3.2 匹配网络 ............................................................................................................................ 29 3.4 电路设计 .......................................................................................................................................... 29 3.4.1 电路结构的选择 ................................................................................................................... 29 3.4.2 MOS 管尺寸的选择 ............................................................................................................... 30 3.4.3 电路结构选择 ....................................................................................................................... 30 3.4.4 电路结构选 择 ....................................................................................................................... 33 3.5 版图设计 .......................................................................................................................................... 33 3.6 仿真结果 .....
展开阅读全文
收藏
下载资源

加入会员免费下载





足球比分直播