足球比分直播

铜基底上具有特殊润湿性的双功能薄膜的制备.pdf

返回
铜基底上具有特殊润湿性的双功能薄膜的制备.pdf_第1页
第1页 / 共64页
铜基底上具有特殊润湿性的双功能薄膜的制备.pdf_第2页
第2页 / 共64页
铜基底上具有特殊润湿性的双功能薄膜的制备.pdf_第3页
第3页 / 共64页
铜基底上具有特殊润湿性的双功能薄膜的制备.pdf_第4页
第4页 / 共64页
铜基底上具有特殊润湿性的双功能薄膜的制备.pdf_第5页
第5页 / 共64页
点击查看更多>>
资源描述:
目 录 摘 要 ........................................................................................................................ I Abstract ........................................................................................................................ III 第一章 绪 论 .......................................................................................................... 1 1.1 引言 .................................................................................................................. 1 1.2 固体表面的润湿性 .......................................................................................... 2 1.2.1 表面润湿性及其应用 ............................................................................ 2 1.2.2 接触角与 Young,s 方程 ......................................................................... 3 1.2.3 非理想固体表面润湿性的两种模型 Wenzel and Cassie ................. 4 1.2.3.1 Wenzel 模型 ......................................................................................... 5 1.2.3.2 Cassie 模型 .......................................................................................... 5 1.2.3.3 Wenzel 状态与 Cassie 状态之间的关系 ............................................ 6 1.2.4 表面自由能 ............................................................................................ 6 1.2.5 滚动角与接触角滞后 ............................................................................ 7 1.3 超疏水表面的制备方法 .................................................................................. 8 1.3.1 刻蚀法 .................................................................................................... 8 1.3.2 溶胶-凝胶法 ........................................................................................ 10 1.3.3 自组装法 .............................................................................................. 10 1.3.4 化学沉积法 .......................................................................................... 11 1.3.5 交替沉积法 .......................................................................................... 12 1.3.6 模板法 .................................................................................................. 13 1.3.7 溶剂-非溶剂法 .................................................................................... 14 1.3.8 直接成膜法 .......................................................................................... 14 1.3.9 其他方法 .............................................................................................. 14 1.4 具有特殊润湿性的表面 ................................................................................ 15 1.4.1 超疏水 /超疏油性表面 ........................................................................ 16 1.4.2 超疏水 /超亲油性表面 ........................................................................ 17 1.4.3 超亲水 /超亲油性表面 ........................................................................ 17 1.4.4 超亲水 /超疏水性表面 ........................................................................ 18 1.5 选题依据与研究内容 .................................................................................... 18 1.6 参考文献 ........................................................................................................ 19 第二章 超疏水、超亲油/疏油性铜表面的制备 .................................................. 29 2.1 引言 ................................................................................................................ 29 2.2 实验部分 ........................................................................................................ 30 2.2.1 实验试剂 .............................................................................................. 30 2.2.2 分析表征 .............................................................................................. 30 2.2.3 实验方法 .............................................................................................. 30 2.2.3.1 铜片清洗 ........................................................................................... 30 2.2.3.2 铜表面微纳米结构银膜的制备 ....................................................... 30 2.2.3.3 超疏水超亲油性铜表面的制备 ....................................................... 30 2.2.3.4 超疏水疏油性铜表面的制备 ........................................................... 31 2.2.3.5 超疏水、超亲油/疏油性铜表面膜的稳定性测定 ......................... 31 2.2.3.6 对比实验 ........................................................................................... 31 2.3 结果与讨论 .................................................................................................... 31 2.3.1 铜片上银膜的表面形貌 ...................................................................... 31 2.3.2 铜片上银膜的晶体结构分析 .............................................................. 32 2.3.3 修饰前后铜片表面的接触角变化 ...................................................... 32 2.3.4 接触角与修饰时间的关系 .................................................................. 34 2.3.5 超疏水性铜表面在水和有机溶剂中的稳定性 .................................. 35 2.4 结论 ................................................................................................................ 36 2.5 参考文献 ........................................................................................................ 36 第三章 超疏水、高疏油性铜表面的制备 ............................................................ 40 3.1 引言 ................................................................................................................ 40 3.2 实验部分 ........................................................................................................ 40 3.2.1 实验试剂 .............................................................................................. 40 3.2.2 分析表征 .............................................................................................. 40 3.2.3 实验方法 .............................................................................................. 41 3.2.3.1 铜片清洗 ........................................................................................... 41 3.2.3.2 超疏水高疏油性铜表面的制备 ....................................................... 41 3.2.3.3 铜表面膜的稳定性测定 ................................................................... 41 3.2.3.4 对比实验 ........................................................................................... 41 3.3 结果与讨论 .................................................................................................... 41 3.3.1 铜片上薄膜的表面形貌 ...................................................................... 41 3.3.2 铜片上薄膜的晶体结构分析 .............................................................. 43 3.3.3 反应前后铜表面的接触角变化 .......................................................... 44 3.3.4 全氟辛酸浓度和反应时间对表面润湿性的影响 .............................. 45 3.3.5 超疏水薄膜在水和有机溶剂中的稳定性 .......................................... 46 3.4 结论 ................................................................................................................ 47 3.5 参考文献 ........................................................................................................ 47 第四章 超疏水、超亲油性铜表面的制备 ............................................................ 50 4.1 引言 ................................................................................................................ 50 4.2 实验部分 ........................................................................................................ 50 4.2.1 实验试剂 .............................................................................................. 50 4.2.2 分析表征 .............................................................................................. 51 4.2.3 实验方法 .............................................................................................. 51 4.2.3.1 铜片清洗 ........................................................................................... 51 4.2.3.2 铜表面微纳米结构银膜的制备 ....................................................... 51 4.2.3.3 超疏水超亲油性铜表面的制备 ....................................................... 51 4.2.3.5 超疏水超亲油性铜表面膜的稳定性测定 ....................................... 51 4.2.3.6 对比实验 ........................................................................................... 51 4.3 结果与讨论 .................................................................................................... 52 4.3.1 铜表面银膜的表面形貌 ...................................................................... 52 4.3.2 铜表面银膜的晶体结构分析 .............................................................. 53 4.3.3 修饰前后铜表面的接触角变化 .......................................................... 54 4.3.4 硝酸浓度和反应时间对表面润湿性的影响 ...................................... 55 4.3.5 超疏水铜表面在水和有机溶剂中的稳定性 ...................................... 57 4.4 结论 ................................................................................................................ 58 4.5 参考文献 ........................................................................................................ 58 硕士期间论文发表 ...................................................................................................... 60 致 谢 ...................................................................................................................... 61 摘 要 I摘 要 表面润湿性是固体表面的重要特性之一, 主要取决于固体表面的化学组成和微观几何结构。近年来,一些具有特殊润湿性的表面,如超疏水/超亲油表面、超疏水/超疏油表面以及超亲水/超亲油表面,在生产、生活和基础研究领域具有广泛而重要的用途,引起了研究者的广泛重视。例如,超疏水/超亲油表面,可以作为一种新的分离手段,简单、有效地分离油和水混合物;超疏水/超疏油表面,具有防腐蚀及防水、防污的自净性质;而超亲水/超亲油表面,如挡风玻璃,当液体与之接触时,能使表面保持透明、洁净。不过,这种材料的研究才刚刚起步,所以寻求操作简单、方便,膜稳定性高的特殊润湿性表面的制备方法,是当前研究的重要目标之一。 电交换反应是利用基底和溶液中离子之间的电交换反应, 在基底表面形成微纳米几何结构, 然后用低表面能物质进行修饰, 即可得到具有特殊润湿性的表面,该方法简单、快捷且易操作。 本论文采用电交换反应,首先在铜片表面构建微纳米几何结构,然后用低表面能物质如 12-羟基硬脂酸、月桂酸、全氟辛酸分别进行修饰,从而制得了润湿性可控的超疏水/超亲油性及超疏水/高 疏油性表面。本论文取得的主要成果如下 1. 将铜片在硝酸银溶液中进行浸泡,使银沉积到铜片上形成微纳米结构的树枝状银膜,然后用 12-羟基硬脂酸、月桂酸、全氟辛酸分别进行修饰,从而制得同时具有超疏水/超亲油性或超疏水/疏油性的表面, 并对表面润湿性与修饰时间的关系进行了研究。 2. 将铜片在一定浓度的硝酸银和全氟辛酸的混合溶液中进行浸泡,在铜表面形成花瓣状微纳米结构银膜的同时,自组装了一层全氟辛酸,用简单的一步反应成功地制备了超疏水/高疏油性表面,并对表面润湿性与全氟辛酸的浓度及反应时间的关系进行了研究。 3. 将铜片在一定浓度的硝酸和硝酸银的混合溶液中进行浸泡,使银快速沉积到铜表面形成微纳米结构的树枝状银膜,然后用 12-羟基硬脂酸、月桂酸分别进行修饰,从而制得同时具有超疏水/超亲油性表面,并对混合溶液中硝酸的浓度和反应时间对表面润湿性的影响进行了研究。 本论文制得的具有特殊润湿性的表面, 在水和常用有机溶剂中有良好的稳定摘 要 II性,而在空气中放置较长时间后仍保持其超疏水、超亲油/疏油性。 关键词 电交换反应;超疏水;超亲油;高疏油 Abstract IIIAbstract Wettability is an important property of solid surfaces that is governed by both the chemical composition and the surface geometrical structure. In recent years, bifunctional interfacial materials with unusual wettability such as superhydrophobicity/superoleophilicity, superhydrophobicity/superoleophobicity and superhydrophilicity/superoleophilicity have attracted significant interest for their potential and practical applications in everyday life, industrial and agricultural production and fundamental research. For example, superhydrophobic and superoleophilic surfaces of filters can separate oil and water mixture easily and efficiently, which paved a novel pathway for the development of modern separation techniques, superhydrophobic and superoleophobic surfaces of textiles have self-cleaning properties by means of repelling oils and water, and superhydrophilic and superoleophilic surfaces of windshield glasses can keep transparent and clean when liquids contact on the windshield. As a result, it still remains a great challenge to construct the surfaces with high stability and unusual wettability using simple and convenient techniques. Compared to other approaches, galvanic ion exchange reaction is simple, time-saving, inexpensive, and easier in operation at lower temperatures. It has been used extensively for the ation of nanostructural surfaces by simply making use of the galvanic ion exchange reaction between a substrate and ions, and then to produce superhydrophobic surfaces after modified by low surface energy materials. In this paper, the silver films with different micro/nanobinary structure were facilely fabricated on copper substrates by using galvanic exchange reaction, and after being modified by self-assembled monolayer of different long-chain fatty acid such as 12-hydroxy stearic acid, lauric acid or perfluorooctanoic acid, the as-prepared substrate showed tunable and unusual wettability. The main results are showed as follows 1. Homogeneous and dense dendrite micro/nanostructural silver coating was prepared by immersing copper substrate in silver nitrate solution through galvanic exchange reaction. 12-hydroxy stearic acid or lauric acid modification to the coating Abstract IVresulted in a ation of superhydrophobic/superoleophilic surface. Whereas perfluorooctanoic acid passivation brought about a superhydrophobic/oleophobic surface. And the relationship between coating time and water contact angles were also discussed. 2. The superhydrophobic and high-oleophobic flower-like silver films with micro/nanobinary structure were facilely fabricated on copper substrates in a one-step process via galvanic exchange reaction, by simply immersing the copper substrates in silver nitrate solution containing perfluorooctanoic acid in different quantities. And the relationship between surface wettability and the concentration of perfluorooctanoic acid and reaction time were also studied. 3. The dendrite silver films with micro/nanobinary structure were facilely and easily fabricated on copper substrates by simply immersing the copper substrates in the mixed solution of silver nitrate and nitric acid for a short time using galvanic exchange reaction. And after being modified by a self-assembled monolayer of 12-hydroxy stearic acid or lauric acid, the as-prepared substrate indicated both superhydrophobic and superoleophilic properties simultaneously. We also studied the concentration of nitric acid in the mixed solution and the reaction time that effect on the surface wettability. The superhydrophobic surfaces fabricated in this paper showed good chemical stability in water and some common organic solvents such as ethanol, acetone and hexane and durability at ambient conditions. Key words superhydrophobicity ; superoleophilicity ; high-oleophobicity ;galvanic exchange reaction第一章 绪 论 硕士研究生 代学玉 导师杨武教授 高锦章教授 专业 分析化学 研究方向 表面功能材料 1第一章 绪 论 1.1 引言 液体对固体表面的润湿是一个重要的界面现象, 它不仅与人们的日常生活及工农业生产有着密切的联系,而且还影响到自然界中动、植物的种种生命活动。固体表面的润湿性通常用水滴在表面上形成的接触角来衡量,接触角小于 90°的称为亲水表面,大于 90°的称为疏水表面。自上世纪 90 年代以来,与水的接触角大于 150°的超疏水表面因在基础研究中的重要性和工业应用上的巨大潜力而引起了人们的极大关注,现已成为仿生纳米材料技术中的热点之一。这种表面的典型实例是自然界的荷叶表面,水滴在表面上可以自由滚动,当水滴滚动时可以将附着在表面上的灰尘等污染物带走,从而使表面保持清洁。因此,超疏水表面又被称为荷叶效应表面或自清洁表面, 它在工农业生产和人们的日常生活中都有着极其广阔的应用前景,例如 l超疏水表面用于服装等纺织品上,可以起到防水防污和自清洁的效果; 2超疏水表面用于玻璃、陶瓷、混凝土、木材等建筑材料上,可以使材料具有自清洁或易于清洗的效果; 3超疏水表面用于金属材料上,可以实现自清洁,提高其抗污染、抗腐蚀的能力; 4超疏水表面用于船舶、 舰艇的外壳或管道的内壁, 可以降低与水流之间的摩擦阻力, 在相同动力下,能提高舰船水面航行速度及载重量; 5超疏水表面用于高降雪地区的卫星天线或户外标牌上,可以防止因积雪导致的信号中断或外观模糊。 众所周知, 固体表面的润湿性主要取决于它的化学组成或表面自由能和微观几何结构或表面粗糙度。因此,超疏水表面的制备一般有两种途径,一种是在粗糙表面上修饰低表面能的物质,另一种是在疏水性材料表面构建粗糙结构。由于在光滑表面上,通过降低表面 自由能最多只能将接触角提高至 120°左右,达不到超疏水表面。因此,人工制备超疏水表面应用更为广泛,而其关键在于构建合适的表面粗糙结构, 如针状结构、 具有双多重粗糙度的阶层结构等。 目前,人们己研究出许多构造表面粗糙结构的方法,如刻蚀法、溶胶-凝胶法、自组装法、物理或化学气相沉积法、电化学法、交替沉积法、模板法、异相成核法等。然而, 这些方法大多需要特殊的加工设备或复杂的工艺过程, 不适宜大规模生产。因此,发展简单、方便的超疏水表面制备技术,是当前研究的重要目标之一。 近年来,除超疏水性,一些具有特殊润湿性的表面,如超亲水、超亲油、超第一章 绪 论 硕士研究生 代学玉
展开阅读全文
收藏
下载资源

加入会员免费下载





足球比分直播